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The calculated results ,  represented  by graphs, show that in the initial period of solidifi-  
cation the motion of a melt  is fully determined by the shrinkage at the front of c rys ta l -  
lization. The effect develops more  strongly at lower Grashof numbers  and higher Stefan 
numbers .  As the rate of solidification and the tempera ture  gradient decrease  the p roc-  
ess of natural  thermal  convection develops in the liquid phase~ The calculated resul ts  
are  compared with experiment.  

It is known that the the rmal  convection of the liquid core  of a crys ta l l iz ing ingot has a considerable 
effect on the processes  of formation of the ingot 's mac ros t ruc tu re .  To determine the velocities of convec- 
tive motion of the melt the authors of [1] performed a se r ies  of experimental  studies which confirmed the 
presence of mixing of the liquid core up until its complete crystal l izat ion.  Theoret ica l  studies [2, 3] c a r -  
ried out on the assumption of the identical density of the liquid and solid phases give analogous resul ts .  
Under actual conditions the densities of liquid and solidifying melts  differ, and therefore  so-cal led  "Stefan" 
currents ,  whose direction is determined by the ratio of densities of the two phases,  develop at the front of 
crystal l izat ion.  

The influence of the shrinkage effects on the nature of the the rmal  convect ion is studied in the report .  
A rectangular  region of a vert ical  c ross  section containing a melt whose initial t empera tu re  T o is higher 
than the crysta l l izat ion tempera ture  is analyzed. At a t ime t > 0 the tempera ture  of the walls of the cavity 
is abruptly reduced to the crysta l l izat ion tempera ture  of the melt .  The solid phase forms f rom the cold 
boundaries by a quadratic law with the direction of motion toward the center  of the cavity. It is assumed 
that the convective motion has an axial symmet ry  relative to the vert ical  axis 0~ 2, and the fur ther  study of 
the thermal  convection pa ramete r s  is ca r r i ed  out for a cavity bounded above, on the side, and below by the 
solidification fronts and by the axis of symmet ry  0~ 2 (Fig. 1). 

For  the solution of the stated problem a system of Navier -S tokes ,  heat t ransfer ,  and continuity equa- 
tions is writ ten in dimensionless form: 

P--~ 0~ + (~r = - - V n  + A V+]-gGrO; (1) 

o o  
0~ v Pr V 0 = A0; (2) 

v u  (3) 

with the boundary conditions 

Vl,=0=o (4) 

0 [,=0=l; 
dO 
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V ~ h . = o  = v~]n .=~.  = V a l n . = ~  = V 4 n . = ~ .  = d r ,  = O; 
d~h ~h=0 

(6 )  

V3[m=e, - Sis:; VlI~,=e, = - :  Stei; (7) 

V3h,=. = L~, (8) 

w h e r e  8i (i =1,  2 . . . .  ) is the  r e l a t i v e  width of  the l iquid zone;  half  the 
ho r i zon t a l  d imens ion  of the cav i ty  (l ~/2) is t aken  as the c h a r a c t e r -  
is t ic  s ize;  ~ = t / t  0 is the d i m e n s i o n l e s s  t ime  (F roude  number ) ;  the 
c h a r a c t e r i s t i c  t ime  is to=l~/4a; a is  the t h e r m a l  d i f fus iv i ty  coeff i -  
cient;  L 1 is the  ra te  of descen t  of  the uppe r  c rus t ;  St =(p JP2 = l ) / P r  
is the Stefan number ;  O 1 and p 2 a r e  the dens i t i e s  of the sol id  and liquid 
phases ,  r e spec t i ve ly ;  v is the  coeff ic ient  of k inema t i c  v i scos i ty ;  0 = 
( T - T c ) / ( T o - T  c) is the d i m e n s i o n l e s s  t e m p e r a t u r e ;  T c is the c r y s t a l -  
l iza t ion t e m p e r a t u r e ;  T O is the init ial  t e m p e r a t u r e ;  P r  = v / a  is the 
P rand t l  number ;  Gr =gfi(To-Tc)l~/8v 2 is the Grasho f  number ;  fl is 
the t e m p e r a t u r e  coeff ic ient  of v o l u m e t r i c  expansion;  ~r =P/Po is the 
d i m e n s i o n l e s s  p r e s s u r e ;  the sign ' denotes  a der iva t ive  with r e s p e c t  
to  the t ime  ~-. 

In the upper  par t  of the ingot along with the f o r m a t i o n  of a sol id  
c r u s t  t h e r e  f o r m s  a sh r inkage  bas in  owing to the makeup  of the side 
and lower  so l id i f ica t ion  f ron t s  with the  tac i t .  The equat ion of  balance  
of the flow r a t e s  of  the mel t  at the so l id  boundar i e s  has  the f o r m  

L~8~ = [St~(e~--H) + Ste~l]. (9) 

Solving th is  equat ion fo r  L~ and subs t i tu t ing  into (8), we obtain 

v.I,,.=. = + 4].  (lO) 

Let  us in t roduce  the s t r e a m  funct ion ~,  connec ted  with the  v e -  
loc i ty  componen t s  V~ and V~ by the  equat ions  

V a = ~ a n d v ~ :  0,  
0 ~  ' 

the vo r t i c i t y  ~ - = r o t ' ~ ,  and the t ime-dependen t  va r i ab le s  

F ig .  3 ~ =  ~J_t ~ _ ~ I ~ - - H  ( 1 1 )  
81 P 82--  H ' 

which map a r e c t a n g u l a r  f ie ld  with mov ing  boundar i e s  onto the unit f ield of  a squa re .  The s y s t e m  of equa-  
t ions  (1)-(3) now takes  the f o r m  

o-~ + ~ (e~-- H) t)~ 3 ~aei o~-~ (e~-- H) L e~ ~ + ~ (e~ - -  H) + H'  ~ = PrAxq~ ~, o ~ ,  

whe re  

A , =  - -  % 

1 a 2 1 0 '~ 

al  = ~ 0~ + ( ,~-H) - - - - - ~ -  o~" 

(14) 

A coord ina te  gr id  and a t ime  g r i d  a r e  in t roduced  fo r  the r e p r e s e n t a t i o n  of s y s t e m  (12}-(14) in f in i te-  
d i f f e rence  f o r m :  

r ~a=mh; h=l/I=t/M; i = i ,  2 . . . .  I ;  r e = l ,  2...M]; 

Tn={T=Zn%~(  ~k=A h-s "'')" 
n 

2 5 3  



If  one u s e s  t he  m e t h o d  of  f r a c t i o n a l  s t e p s  then  Eqs .  (12) and (13) a f t e r  d i v i s i o n  a long the  c o o r d i n a t e  
a x e s  0~ 1 and 0~ 3 a r e  w r i t t e n  in the  f o r m  

+ A [ Pr[Ot~--] [cg~+ (a2q)l+ ( ) %.m--q~i,,n t Pr R a 0 - - .  (16) 

OiA'm--O~'m ' gins;+ Pr '8.~+ ]/O(}~A _i_ !/0'Ol A. 

.... [ KPr (a*/+t~/+,.dl to~s (~/+ (+~-m~' a~0 (is) ~ u-~ - <~ '__ . )  -h (4 - -  H')+ H' + + ~ . . ( ~ ) "  

The P o i s s o n  equa t ion  in a f o r m  s u i t a b l e  fo r  i t e r a t i o n  i s  w r i t t e n  a s  

�9 2 a -  [(~a 0 * , 2  ( . t .  TM ~ i ' " + : ~ + ' m w c 0 ~  2[e~ , (e~--H) ~] - - ' ~ !  tVi-- i ,m+ 
t 

3 z i_,+, , e 2 (8 a -- H)' h'~+.,~] tbi.,r,}, (19) + 9~+~,..) + 8 ,  tv+ . . . .  , + r  + - : 

w h e r e  m 0 is a r e l a x a t i o n  p a r a m e t e r  d e t e r m i n e d  by  t h e  e x p r e s s i o n  r + s i n  ~rh); s is  the  n u m b e r  of the  
i t e r a t i o n .  

In Eqs .  (15)-(18) the  s y m b o l s  - - ,  A,  and + c o r r e s p o n d  to t he  n - t h  (n + l / 2 ) - t h ,  and (n + l ) - t h  t i m e  l a y e r s .  

F r o m  t h e  condi t ion  (4) we ob ta in  

r O~=a =i. (20) 
Expanding  the  t e m p e r a t u r e  funct ion  in the  v i c i n i t y  of the  b o u n d a r y  ~ ~ = 0 wi th  a l l o w a n c e  f o r  the  c o n -  

d i t ion  (5) and Eq.  (17), we ob t a in  

A 2~;~ F^ h ~  n-- l Oo,~: ~ [o<,,, + ~ ~0,.j. (2~) 

The o the r  t e m p e r a t u r e  b o u n d a r y  cond i t ions  a r e  s a t i s f i e d  e x a c t l y .  F o r  the  d e t e r m i n a t i o n  of the  b o u n d a r y  
cond i t ion  fo r  the  s t r e a m  func t ion  at Ca =0 the e x p r e s s i o n  (10) i s  w r i t t e n  in the  f o r m  

] 

Integrating the equation obtained along the coordinate ~ I and taking the integration constant as equal 

to zero, we obtain 

~+,0 : - -  St e|  + e 8zih. (22) 

T h e  s t r e a m  func t ions  at  the  o t h e r  b o u n d a r i e s  a r e  ob t a ined  a na logous ly :  

~0,m=0; tPi,M : St e'3ih; (23) 

~s,~ = - -  St ~i (% - -  H)  mh .  (24) 

The b o u n d a r y  cond i t ions  fo r  the  v o r t i c i t y  go a r e  o b t a i n e d  t h r o u g h  e x p a n s i o n  of the  s t r e a m  func t ion  at 
t he  c o r r e s p o n d i n g  b o u n d a r i e s  u s i n g  the cond i t ions  (6), (22)-(24),  and the  P o i s s o n  equa t ion  (14): 

9 
q~0,~n:0;T+,.~ = ]~ (St eaelih - -  ~,.~r-t); (25) 

+ 

2 [St ~'1 (% - -  H) mh + #s-~,,4. (PLm = -- ;~ 

(26) 

(27) 

Thus,  the  p r o b l e m  (15)-(19) wi th  the  b o u n d a r y  cond i t ions  (20)-(27) i s  f o r m u l a t e d  in f i n i t e - d i f f e r e n c e  
f o r m .  The  i n t e g r o - i n t e r p o l a t i o n  m e t h o d  d e v e l o p e d  in [4] was  c h o s e n  f o r  i ts  n u m e r i c a l  r e a l i z a t i o n  on a 
D n e p r - 2 1  c o m p u t e r .  The t r i a l - r u n  equa t ions  and the  coe f f i c i en t s  f o r  t h e m  w e r e  d e t e r m i n e d  in a c c o r d a n c e  
wi th  the  s a m e  work .  A c a v i t y  wi th  a r e l a t i v e  he igh t  l 2 =4 was  c h o s e n  fo r  the  s tudy .  The  P r a n d t l  n u m b e r  in 
a l l  c a s e s  r e m a i n e d  cons t an t  and equa l  to 0.224. 
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As shown by the resul ts  of the calculation, presented 
in Fig.  2 (the solid lines are  ascending currents  and the 
dashed lines are  descending currents) ,  the development of 
the rmal  convection with t ime can be divided a rb i t ra r i ly  into 
three stages.  The movement of the melt into the upper part  
of the cavity is observed near  the solidification front in the 
interval of numbers  0< ~--<1- 2. The duration of this stage 
and the maximum velocities in this interval essent ial ly  de- 
pend on the values of the Stefan numbers  which cha rac t e r -  
ize the degree of shrinkage of the solid phase. In the ab- 
sence of shrinkage such proper t ies  do not develop in the 
liquid region (Fig. 2, curve 0). 

With a decrease  in the rate of growth of the solid crust  
the second stage, the stage of natural  the rmal  convection, 
develops in the liquid part  of the ingot under the effect of 
the t empera tu re  gradient.  Accelerat ion of the convective 
motion occurs  in the interval  of Froude numbers  ~- 1 -< ~- -< ~ 2, 
with the maximum velocity being reached at the end of this 
interval.  As the resul ts  of the calculation show, an increase  
in the shrinkage of  the solid phase causes an increase  in the 
intensity of mixing of the melt  with a concurrent  decrease  
in the accelerat ion stage. 

The third  stage of the p rocess  (T > ~- 2) is c h a r a c t e r -  
ized by a decrease  in the intensity of mixing of the melt as 
its t empera tu re  dec reases  and by a t ransi t ion to a mode of 
"creeping" flow. 

The effect of the Grashof numbers  on the process  of 
thermal  convection is i l lustrated by Fig. 3 (St =0.2; the solid 
lines are  ascending currents ;  the dashed lines are  descend- 
ing currents) ,  f rom which it is seen that at small  Grashof 
numbers  (Gr =1) the motion of the melt  is determined only 
by the shrinkage effects at the boundaries of the solid phase. 
With an increase  in the Grashof number  the force  of con- 
vective motion (Gr0) becomes the determining force in the 
process  of development of the  convective motion. The in- 
c rease  in the intensity of thermal  convection is accompanied 
by a change in the duration of all the stages.  

The calculated isolines of the s t ream function, the analysis of which allows one to t race  the dynamics 
of the development of thermal  convection, are  plotted for  an understanding of the hydrodynamic p rocesses  
ar is ing in the crysta l l iz ing liquid cores  (Fig. 4, St =0.5; a, b, c, d, e, f for ~ =0.03, 0.06, 0.02, 0.01, 0.09, 
and 0.19, respect ively) .  

A charac te r i s t i c  proper ty  of these cases  is the presence  in the liquid phase of three independent zones 
closed at the boundaries of the solid phase at the s tar t ing t ime.  Subsequently, vort iei ty s tar ts  to form in 
the lower corner  of the cavity (see Fig. 4b) which is then "washed out" f rom the boundary by the melt 
descending at the solidificationfront (see Fig. 4c, d). The symmet r i ca l  location of the vortex (see Fig.  4e) 
cor responds  to the maximum velocity in Fig.  2. As the cooled layers  of the melt  descend to the bottom part  
of the cavity the vor t ic i ty  is displaced to the region of higher t empera tu res .  

In Fig. 5 we present  a compar ison of the experimental  (dashed line) and calculated (solid line} velocity 
component V 2 for Gr = 0.5-105, Pr  = 8.8, and St = 0.1. The experiment was per formed on naphthalene by the 
method of [5]. The initial stage of thermal  convection was recorded  by continuous motion picture photog- 
raphy. The relat ive height of the mold was l 3 =4 and the charac te r i s t i c  size was 11/2 =30 mm.  

The analysis  shows that the calculation and the experiment give qualitatively the same picture.  The 
quantitative differences must  be ascr ibed  to the three-dimensional i ty  of the experimental  mold and the 
large amount of gas dissolved in the naphthalene which, being re leased  f rom the solidified phase, promoted 
the formation of countermotion in the liquid phase. 
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Thus, the "Stefan" cur ren t s  at the phase interface have an important  effect on the intensity of con- 
vective motion. The effect is the more  marked,  the smal le r  the Grashof number  and the g rea t e r  the 
shrinkage.  

V. A. Efimov et al., in: 
93-95. 
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